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Abstract

Regolith Radiative transfer model; applications to Saturn’s icy rings

by

Sanaz Vahidinia

In this dissertation I first present work on scattering properties of icy granular aggregates in an

application to Saturn’s F ring in the mid IR. This work helped us gain a deeper understanding

of how mutltiple interfaces present in a granular object affects important spectral features.

The granular aggregate study has naturally led us to studying scattering from more complex

system of granular particles packed on an extended surface otherwise known as regolith. Due

to major shortcomings of current readiative transfer models for regolith surfaces we have

developed a regolith radiative transfer model (RRT) based on a first-principles approach to

regolith modeling that is essential for near-to-far inf rared observations of grainy surfaces,

and is readily configured to answer fundamental questions about popular models with whi ch

all remote observations of all airless solar system bodies with granular surfaces are currently

interpreted. Our model accounts for wavelength-size regolith particles which are closely packed

and can be heterogeneous in composition and arbitrarily shaped.
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Chapter 1

Introduction

Interpreting remote observations of granular bodies is an important tool in determin-

ing the surface composition of all solid bodies in the solar system. The granular surfaces, such

as occur on the surfaces of airless solar system bodies are referred to as regoliths. Regolith

surfaces are composed of particles of various sizes, often comparable to or smaller than the

wavelength in question that scatter light coherently, packed to varying degrees of porosity such

that many particles are touching. Popular models by Hapke (eg., 1981, 1999), Shkuratov et

al (1999a,b), and others make simplifying assumptions which are valid to varying degrees and

which produce results which can differ greatly in their implications about the actual surface

material (Poulet et al 2002a, 2003; Shepard and Helfenstein 2007). Modelling such surfaces

becomes even more problematic with current models when the regolith grains are not large

compared to a wavelength (a basic tenet of Hapke and Shkuratov models) and they are not well-

separated but indeed closely packed, violating the assumptions of “bright cloud” doubling-type

models which use Mie scattering as in Spilker et al. (2005).

Modeling a regolith layer generally involves calculating the single scattering albedo

of an individual regolith grain, and then using one of the various radiative transfer methods to

derive the overall reflection and transmission of a layer composed of many similar grains. Single

scattering albedo can be calculated for small particles by using rayleigh scattering and for larger

spherical particles, Mie scattering is used. Since Mie scattering is cumbersome to compute in

the geometrical optics limit, various ray-optics based approaches are used for particles much

larger than the wavelength (Hapke, Shkuratov).

Once the single particle albedo is obtained, then various multiple scattering tech-
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niques can be used to derive the layer properties. These popular models such as the N-

stream approach DISORT(Hansen and Travis 1974), adding/doubling(Wiscombe 1975(a,b),

Plass 1973), analytical treatment using Chandrasekhar’s X and Y functions and assuming

isotropic scattering (Hapke 1981), two-stream approach using a similarity transform to convert

actual forward-scattering particle phase functions and albedo to isotropic scattering (Conel

1969). All these assume independent scatterers with albedos calculated from the methods

named above. Some variations on these techniques has been used to capture close packing

effects. These include truncating the diffraction lobe of the single particle scattering function

(Pollack and Cuzzi 1979), and Lorentz-Lorentz technique for fine powders(ref). These models

have been used extensively, however, they fail to capture important features in laboratory and

remote spectra of regolith surfaces (Poulet,Shkuratov). Because of the still unsatisfactory

agreement with data due to the underlying above, the outlined methods don’t rigorously treat

the problem. We need another method that is not limited by coherency, shape, and size. Our

approach avoids all these frequently inappropriate assumptions by use of the discrete dipole

approximation (DDA) which will be described in chapter 3.

To gain more insight into scattering by granular particles, we modeled individual

isolated aggregates where close packing of monomers can be studied more simply, and where a

unique and previously puzzling application was timely (Cassinni observations of F ring). Part

of the close packing effects of monomers in an aggregate is that as electromagnetic radiation

transfers though the monomers, it is encountered by layers of interfaces from monomer to

air gap to monomer which in turn has a considerable effect on the total scattering from the

aggregate. So, we developed a toy model to allow us to understand these interface effects.

We found that aggregates are more effective scatterers than uniform particles based on our toy

model. Finally we developed the formalism to extend models of this type to regoliths. This

involved devising a new approach to modeling intensity in the mean field of a granular slab and

transforming it into the angular distribution of scattered intensity. We give our results of this

developement in chapter 3.
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Chapter 2

Saturn’s F ring grains: aggregates made of
crystalline water ice

2.1 Background

This chapter describes my study of a single, isolated aggregate with special spectral

features which are diagnostic of the aggregate’s physical properties. I collaborated with the

Visual Infrared Mapping Spectrometer (VIMS onboard Cassini) team to interpret unique, ultra-

high phase angle (176-178.5◦) observations of Saturn’s F ring obtained in 2006. Saturn’s

stranded F ring lies just outside of the main rings. It consists of a narrow inner core,

approximately 50km wide (Murray et al 2008, Bosh et al 1997) surrounded by multiple strands

with variable positions and structure (Charnoz et al 2005, Smith et al 1981,1982, Murray and

Gordon 1997). Voyager observations led to the discovery of two moons, Prometheus and

Pandora, one on either side of the F ring. This configuration led to the belief that these satellites

caused and maintained the narrow structure of the F ring. However, a number of arguments

have been raised against this idea (Showalter and Burns 1982, Cuzzi and Burns 1988, Barbara

and Esposito 2002) and indeed the F ring structure has changed considerably since Voyager

(Showalter 2009, Murray et al 2008).

The F ring lies in a very dynamic and perhaps even chaotic environment (Scargle et

al 1993, Winter et al 2007) with clumps and strands forming and disappearing on various time

scales. The core itself has a 1 km narrow component with an optical depth of 0.1 and centimeter

or larger size particles determined by a combination of stellar and radio observations (Lane et al
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1982, Tyler et al 1983). Despite its possibly chaotic environment, the core appears to maintain

a nearly constant eccentricity and uniform precession rate (Bosh et al 2002, Nicholson et al

1999). This has led to the belief that most of the mass of the F ring is concentrated in this

narrow component, which is embedded in a haze of smaller particles spanning 50km. This

more diffuse part of the core is mainly composed of 1 − 100µm size particles with a small

population of sub-centimeter size particles (Showalter et al 1992). The several outlying strands,

extending over perhaps 150km radially, are another variable feature, and have changed since

Voyager observations. Cassini has detected more than five strands with a much larger radial

span compared to the two or three strands detected by Voyager; the strands appear to have

a transient, spiral configuration (Charnoz et al 2005). The core-multistrand structure is itself

enveloped in a much broader, 1500km wide region of much lower optical depth.

In this paper we focus on near-infrared spectra of the F ring obtained by VIMS at

ultra-high phase angles greater than 177o (figure 2.1), which means the ring falls near the line

connecting the spacecraft to the sun, so the observation point is within the forward-diffraction

lobe of particles of 10-100 micron size. Because the F ring has low optical depth, the observed

brightness will be dominated by single-scattered diffraction. VIMS data are an outstanding

tool for this type of observation and analysis because of their broad spectral coverage (0.35-5

µm) and good spectral resolution. The modeling is somewhat simplified because the particle

abundance and optical depth are low, so single scattering dominates. In this paper we treat

single scattering by several different techniques: Mie theory (assuming spherical particles) and

the Discrete Dipole Approximation (DDA) to assess the possibility of irregular aggregates. In

our Mie calculations we allow for the effects of porosity using Effective Medium Theory (EMT;

Bohren and Huffman 1983, chapter 8)

While the forward scattered light is dominated by diffraction in the ultrahigh phase

data, we see that the broad spectral maximum is bifurcated by a narrow dip at 2.86µm, and

the familiar 1.5 and 2 µm absorption features are missing (figures 2.2 and 2.3). We can explain

both of these spectral surprises in the context of the single scattering diffraction lobe model. The

broad peak in the spectra near 2-3µm wavelength implies a peak in the particle size distribution

at sizes around 10 − 30µ, as we will show (section 3.3). The water ice optical constant has a

Christiansen frequency (real index approaches unity) at 2.86µm, and we find that this is what

causes the narrow 2.86µm dip. We will show that the precise spectral location of the narrow
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absorption feature (2.86µm) is a diagnostic of the material (water ice) and even its crystalline

state.

Figure 2.1: Illustration of the observing geometry. Top: Cassini ISS image of the planet and ring system with the
sun in occultation, blocked by the planet. The bright spot on the planet’s limb is light refracted through the planet’s
upper atmosphere, not the sun itself. The main rings are highlighted by the tiny amount of small, forward-scattering
dust grains they contain. The diffuse E and G rings are visible at about 2.8 and 4.0 Saturn radii. The F ring is a very
bright band lying just outside the main rings. Bottom: The geometry of the VIMS F ring observation, showing the
sun (symbol) behind the planet. Centered on the sun’s direction are loci of constant scattering angleΘ (dashed lines);
Θ is an angular offset from the sun, as seen from Cassini, and the phase angle α = π − Θ. Notice that different
ring longitudes θ can have the same phase angle α. Because the spacecraft was quite far from Saturn during this
observation, Θ was quite small (1-3◦ for the observations we discuss here). Our spectra came from calibrated VIMS
mosaics in this same geometry; we averaged the F ring I/F longitudinally and integrated it radially in bins such as
shown (see section 2).

2.2 Data

The Visual and Infrared Mapping Spectrometer (VIMS) is described in detail in

Brown et al. (2004). Briefly, this instrument acquires spectra at 352 wavelengths between 0.35

and 5.2 µm for an array of up to 64×64 spatial pixels to produce a map of the spectral properties
in a given scene, known as a cube. Two separate channels measure the visual and infrared

components of the spectra. The visual (VIS) channel measures spectra at 96 wavelengths
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Cubes Mid Time Size Int (IR, VIS)
R ev 28 HIPHASE001

V1537007144 2006-258T09:57 64*64 80,5120
V1537008474 2006-258T10:09 64*64 80,5120
V1537009791 2006-258T10:41 64*64 80,5120
V1537023251 2006-258T14:23 12*12 320,3840
V1537023308 2006-258T14:24 12*12 320,3840

R ev 45 HIPHASE001
V1558904277 2007-146T20:28 64*48 160,10000
V1558904798 2007-146T20:37 64*48 160,10000
V1558905900 2007-146T20:55 64*48 160,10000
V1558906421 2007-146T21:04 64*48 160,10000
V1558907125 2007-146T21:17 64*32 320,20000

R ev 28 HIPHNAC001
V1537020614 2006-258T13:39 12*12 320,3840
V1537020671 2006-258T13:40 12*12 320,3840
V1537020826 2006-258T13:42 12*12 320,3840
V1537020960 2006-258T13:45 12*12 320,3840
V1537021101 2006-258T13:47 12*12 320,3840
V1537021246 2006-258T13:49 12*12 320,3840
V1537021303 2006-258T13:50 12*12 320,3840
V1537022556 2006-258T14:11 12*12 320,3840
V1537022613 2006-258T14:12 12*12 320,3840
V1537022772 2006-258T14:15 12*12 320,3840
V1537022904 2006-258T14:17 12*12 320,3840
V1537023048 2006-258T14:20 12*12 320,3840
V1537023194 2006-258T14:22 12*12 320,3840

Table 2.1: Observations used in this study; each is designated by its observation or “cube” number, taken at some
observational mid-time. Each cube has spatial extent given by the pixel dimension (12*12, etc.), and the integration
time (ms) in both the VIS and IR channels. Only the IR channels are used here.
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Figure 2.2: These panels demonstrate the longitudinal variation of F ring spectra at ultra-high phase angles; the
spectra in each phase bin represent different longitudes θ along the F ring having the same phase angle. The spectra
in each phase bin are then averaged, since they are all consistent without any gross longitudinal variation in shape.
Only one of the four spiky spectral features is real (section 2.1).

between 0.35 and 1.04 µm, while the infrared (IR) channel measures spectra at 256 points

between 0.88 and 5.1 µm with a typical spectral resolution of 0.016 µm. In his paper we only

consider the IR channel data, for which the angular resolution was 0.5 milliradians.

The data used in this analysis were obtained during times that Cassini flew through

Saturn’s shadow. While the disk of the sun was blocked from view, VIMS was able to image

the F ring at extremely high phase angles (normally observations are prohibited at phase angles

greater than 160 degrees because the remote sensing instruments are not allowed to look too

close to the sun). On day 258 of 2006 during orbit 28, Cassini spent a protracted period of time

(several hours) in Saturn’s shadow and was therefore able to make extensive observations of the

ring system. Two sequences of observations obtained during this time will be considered here.

The first sequence was named HIPHASE001 and produced a complete mosaic of one ansa of
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Figure 2.3: Comparison of VIMS spectra at ultra-high phase angle 178.04o, high phase angle 162.9o, and low
phase angle 19o. The vertical axis is the Equivalent Width, or the radial integral of F ring brightness (section 2).
The 1.5 and 2 µm ice bands are clearly present in the lower phase angles, as well as a much wider and deeper 3
µm absorption feature. The ultra-high phase angle (178.04o) spectrum has been scaled down by a factor of 9, and
the 19o spectrum scaled up by a factor of 30, to display on the same plot. In this paper we deal exclusively with
normalized spectra and spectral shapes, so normalization constants are irrelevant.

the ring system extending from the planet to outside the core of the E ring. Only the cubes with

the shorter integration times are used in this analysis because these were less likely to saturate

on the F ring. The second sequence, HIPHNAC, covered both ansae, observing a range of radii

and longitudes between the F and D rings. Later, on day 146 of 2007 on orbit 45, Cassini again

passed through Saturn’s shadow and obtained another series of cubes covering the F ring. Here

only five cubes with longer integration times are included in the analysis because the phase

angles were not as high as in the orbit 28 data and we wanted to maximize the signal to noise

ratio in the F ring.

All the cubes used (listed in Table 1) were calibrated and processed using the standard

pipelines to remove dark currents and to convert raw data numbers into the standard measure
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Figure 2.4: VIMS spectra at ultra high phase angles 177.4-178.5o and normalized to their values at 2.86µm. Note
the increasing peak brightness at higher phase angles.

of reflectance I/F (the pipeline also outputs specific intensity if you desire it), which is unity

for a perfect Lambert surface oriented perpendicular to the incident light (McCord et al. 2004,

Cuzzi 1985). The specific calibration curve used with these data was RC17 (technically, RC15

was used to process the cubes, and the final spectra corrected to RC17 using a fixed multiplier at

each wavelength). Individual cubes were geometrically navigated based on the available SPICE

kernels, and the VIMS pointing was refined based on ring features visible in the individual

cubes. This procedure enabled us to determine the observed radius, longitude, phase and

emission angle at the ring plane for each pixel in every cube.

The data for each sequence from orbit 28 were then binned onto a grid of radius and

longitude values to produce hyper-spectral re-projected mosaics of the rings. The resolutions

of these mosaics were 1500 km in radius and 5 degrees in longitude. For each pixel in these

re-projected mosaics, we compute the average I/F at each wavelength, along with the mean

phase and emission angle. The data from orbit 45 was reduced in a slightly different manner.
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Here, each cube covered a relatively small range of longitude (15 degrees) but the phase angle

changed significantly between cubes. The data from each cube was therefore averaged over

longitude to determine the mean brightness versus wavelength on an evenly spaced set of radii.

In this case, the radial bins were 100 km wide. Mean phase angles and emission angles were

also computed for each radial bin.

In all cases, the result of this step in the analysis was a series of radial profiles, each

giving the brightness as function of wavelength and radius for a restricted range of longitudes

and phase angles. Each of these profiles was used to compute a single spectrum of the F ring.

Since VIMS was unable to resolve the narrow component of the F ring which dominates the

brightness in these observations, as seen for instance in higher-resolution images (figure 2.1), we

compute a quantity known as the equivalent widthW , which is the integrated brightness over a

range of radii: W =
∫

(I/F )dr, this quantity (which has units of length) has the advantage that

it is independent of image resolution, unlike the peak brightness. For the rev 28 HIPHASE001

and HIPHNAC data, the brightness was integrated over a radial range between 138,000 km

and 142,500 km from Saturn center. For the rev 45 HIPHASE001 data, a mean background

I/F level based on the mean I/F between 143,000 and 150,000 km was first removed from

each wavelength channel, and then the residual brightness was integrated over the radial range

between 137,000 and 143,000 km. The background-subtraction was done in this case because

the observations were at a somewhat lower phase angle so the brightness of the F ring relative

to the background was significantly lower. These large radial integration ranges include all the

F ring core and strand material, plus the 1500km wide extended halo material. They are both

wide enough that the I/F contribution near their edges is negligible, so the fact that they are

different is of no interest.

The spectra are very sensitive to phase angle and change drastically in shape and

magnitude over a few degrees. Since the F ring is clumpy, we examined the spectra for each

phase angle at various longitudes to check for variability (see figures 2.2 - 2.4). The spectra

of different longitudes were quite similar in shape at the same phase angle, so we averaged the

spectra at different longitudes lying in the same phase angle bin.
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2.2.1 Filter Band Gaps

The VIMS spectral coverage is interrupted in three narrow wavelength bands, where

the change from one order sorting filter to the next causes a low signal. These order sorting

filters reduce overlap between different orders of the grating and block thermal radiation from

the spectrometer optics so as to reduce noise in the long-wavelength (> 3µ) channels). In

our attempts to remove all possible artifacts from our spectra, we identified and rejected a few

channels associated with one of these bands which are usually not rejected by the VIMS team;

here we document our reasons for doing so.

Under an earlier version of pipeline calibration (RC15), spectral ripples covered

the entire spectrum (these have mostly been removed by the RC17 calibration). In order to

understand these, we took ratios of spectra at different phase angles; (figure 2.5) shows several

of these ratios as functions of wavelength. In the ratio spectra, the worrisome ripples vanished,

testifying to their likely instrumental nature and leaving a smooth spectral variation with phase

angle which is, however, punctuated by glitches in the regions of the known filter band gaps.

Close-up plots of these spectral regions are shown in (figures 2.6 and 2.7, taken from our data

sets HIPHASE001 and HIPHNAC respectively. These are doubly normalized spectral plots.

After being normalized as above (ratioed to one selected spectrum at some intermediate phase

angle), they are next normalized by one of their own (normalized) spectral intensity ratios. The

2.86µm Christiansen frequency (section 2.3.2) shows localized variations, but they are spread

over several channels in a systematic way, and vary smoothly with phase angle (the three ratios

in ( figure 2.7) which sharply decrease to shorter wavelengths connect to saturated points which

were designated as zero, so are artifacts). The 2.86µm feature is well away from any filter gaps,

and we believe it is real.

The three known filter gap regions all show similar behavior: strong bin-to-bin

variations which are not always smoothly or systematically varying with phase angle. These

glitches are seen across a well-defined range of wavelengths, but are not generally restricted

in their contamination effects to only three wavelength bins (the nominal gap channel and two

adjacent channels). In the (slightly) lower phase angle series from HIPHNAC (figure 2.7), one

might identify only three corrupted bands in two of the three filter band gaps (1.62, 1.64, 1.65

µm; 2.96, 2.97, 3.00 µm). However, in the HIPHASE001 series ( figure 2.6), four or even

five wavelengths are corrupted in all cases (1.60, 1.62, 1.64, 1.65), (2.94, 2.96, 2.97, 3.00,
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3.01), (3.85, 3.86, 3.88, 3.90), and by comparison it seems to us that the HIPHNAC data (figure

2.7) may be corrupted in the same four channels of the 3.87µm filter gap, as well. For this

reason we would prefer not to assign any observational significance to data in any of these

broader regions. The VIMS team traditionally rejects at most three channels: the nominal filter

gap wavelength and the two adjoining wavelengths. This approach results in F ring spectra

apparently containing two sharp dips in the 3µm spectral region ( figure 2.2); also see Cuzzi et

al 2009 and Clark et al 2009). While there is no known reason to expect corruption of the four or

five channels where we see what appears to us to be suspicious behavior, the above discussion

suggests to us that the longer-wavelength sharp dip seen at 2.95-3.01µm in the VIMS high-

phase F ring spectra shown in (figure 2.2) is not real, and we disregard it from our plots and

analyses.

Figure 2.5: VIMS spectra of the F ring at different phase angles between 177-178 degrees as shown in figure 2.2,
ratioed to a single intermediate phase angle reference spectrum. Only smooth wavelength dependent differences are
seen overall, except for noticeable glitches near the three filter band gaps (nominally 1.64µm, 2.98µm, and 3.87µm)
and a more subtle glitch near the Christiansen frequency at 2.86µm.
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Figure 2.6: Expanded and doubly normalized plots of spectral regions of possible interest at different phase
angles, first normalized as in figure 2.5 above, and again at some wavelength in each normalized spectrum. Four
spectral regions are shown: the top panel shows the water ice 2µm band region - no glitch at all can be seen. The
bottom three panels show regions near the known filter band gaps. The 2.86µm Christiansen feature (2.82-2.90 µm)
can be seen to vary slightly with phase angle, but at an even lower level than than the regions near the filter band
gaps. In this figure the 3.8µm and 1.6µm filter bands are seen to affect four spectral channels each and the 2.9µm
feature is seen to affect five channels.

2.3 Modeling

The F ring particles can be modeled as solid spheres, porous spheres, non-spherical

solid particles, or non-spherical aggregates. The model consists of a size distribution, which

represents the size of a typical ring particle, the composition of the particles as described by

their optical constants (sec. 2.3.1 and 2.3.2), and the internal structure of the particle as modeled

three different ways: (a) solid, (b) porous but on such a small scale that structure is irrelevant;

or (c) porous but composed of monomers with size comparable to the VIMS wavelengths. The

first two kinds of particle internal structure can be handled by Mie scattering combined with

Effective Medium Theory (EMT; section 2.3.4.1) or by standard irregular particle theories based
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Figure 2.7: Expanded and doubly normalized plots of regions of possible interest, as in figure 2.6. In this figure
the 2.9µm and 1.6µm filter band gaps may affect only three spectral channels each but the 3.8µm band gap affects
four channels. The strange behavior of some of the 2.86µm Christiansen features is related to saturation of some of
the nearby spectral channels because of the unexpectedly high I/F (see text).

on Mie scattering (eg, Pollack and Cuzzi 1980). We did not use this latter approach here;

see Hedman et al (2008) for a similar approach using Fraunhofer diffraction to approximate

near-forward scattering. The final possibility (c) requires more sophisticated modeling, and for

this we used the Discrete Dipole Approximation (DDA). While the DDA is also capable of

modeling inclusions of different composition, we do not feel it is justified by the observations

at this stage. We can start constraining the particle size distribution, composition, and porosity

with the simpler Mie theory and EMT model (section 2.3.4) before moving on to the more

complicated discrete dipole model (section 2.3.5).
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2.3.1 Optical constants

All scattering calculations use optical constants or refractive indices for the particles

of interest; we spent some time selecting the best data set for our purposes. We assume that the

F ring particles are composed mostly of water ice with optical constants (real and imaginary

refractive indices nr and ni respectively) that vary over the temperature range in question. We

will further assume the ring particle temperature to be 100K (Esposito et al 1984) and thus will

use optical constants valid at this temperature. There are various optical constant data sets that

cover water ice at 100K in the near infrared. We considered data for crystalline and amorphous

ice from Hudgins et al (1993), Leger et al (1983), Bertie et al (1969, 1977), and Mastrapa et

al (2008, 2009). Data from Hudgins et al (1993) and Leger et al (1983) are for amorphous ice

(figure 2.8) and data from Bertie et al (1977) are for crystalline ice. Mastrapa (2008, 2009) has

the most recent data set for both crystalline and amorphous ice at various temperatures (figure

2.8). This data set is also more finely sampled in wavelength, which results in better modeling

of the spectrum. Mastrapa (2008, 2009) obtains the optical constants of ice by measuring the

absorption coefficient (4πni/λ) through a thin film of ice. These measurements have been done

in two separate experiments from 1.1-2.6µm and 2.5-22.0µm. Since we need optical constants

from 1-5µm, it is important to have the constants in that range without any discontinuities. For

instance, an artificial discontinuity in the ice optical constants near 2.9µmmight have corrupted

the model spectra of Poulet et al (2003) to some degree (F. Poulet, personal communication

2007). We combined the two data sets by using a Kramers-Kronig analysis on the imaginary

index (obtained from the absorption coefficient) of the spectrum to calculate the real refractive

index as a function of λ. Since the imaginary index didn’t have a smooth crossover between the

two overlapping data sets at 2.5µm, we combined the data sets with different smooth bridging

functions, and found that they resulted in very similar Kramers-Kronig results. This is because

the 3µm band is so strong; the analysis basically tries to capture the largest features in the

spectrum, and minor perturbations in lower values of the imaginary index are not contributing

factors to the real index. The 3µ band is due to O-H stretching and is composed of two separate

components (ν1 and ν3), where ν1 corresponds to the symmetric O-H stretching and ν3 to the

asymmetric O-H stretching (Ockman 1958, Hornig et al 1958).
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Figure 2.8: Optical constants for crystalline ice at 100K (Mastrapa 2008, 2009) (black) and amorphous ice at the
same temperature (red) (Hudgins 1993). The crystalline ice real index crosses unity beginning at 2.86µm, whereas
the amorphous real index crosses unity at a slightly shorter wavelength.

2.3.2 Christiansen frequency physics

The water ice 3µm band is interesting because the real part of the refractive index

nr crosses unity multiple times between 2.86 and 3.1µm. The implications of this have been

discussed by multiple authors (Conel 1969, Arnott and Hallett 1995, Mustard and Hays 1997);

a frequency where nr = 1 is referred to as a Christiansen frequency. When nr nears 1, and

ni $ 1, the extinction of the incoming EM wave is due primarily to pure absorption within

the particle (∼ 4πni/λ · 2r $ 1) since the scattered component (reflection and refraction)

is at a minimum and the wave propagates straight through the particle (assuming absorption

within the particle remains small). Recalling Huygens’ principle, we can see how the intensity

of the light scattered by these particles is reduced since the incident wavefront is essentially

undisturbed. Thus for a diffraction dominated spectrum at high phase angle (due to wavelength-

sized particle contributions), the intensity at some small angular distance from direct forward
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scattering decreases at the wavelength where nr = 1 (as observed in the F ring spectrum at

2.86µm). There are multiple wavelengths between 2.86-3.1µm where nr = 1, but we only

see one dip in the spectrum. This is because at the longer wavelength Christiansen frequency

(greater than 2.86 µm) the value of the imaginary index itself is large enough that the particle

absorbs radiation traversing it, and by Huygens’ principle can contribute to disturbance of the

incident wavefront.

Conversely, the Christiansen frequency phenomenon results in an increase in the

directly transmitted light at this same wavelength, as was observed by Cassini’s VIMS during

solar occultation observations (Nicholson et al 2007). This effect is complementary to the

decrease in near-forward diffraction.

2.3.3 Basic radiative transfer for a diffuse ring layer

This section outlines important radiative transfer concepts used in our Mie-EMT

modeling described in section 2.3.4 and DDA modeling described in section 2.3.5. Modeling

the F ring as a homogeneous layer of normal optical depth τ , containing N particles with radii

r, we calculate the observed I/F as a function of the single particle Mueller scattering matrix

S. The Mueller matrix elements relate the Stokes parameters (parameters defining the intensity

and state of polarization) of incident and scattered light (this matrix is called Fij in van de

Hulst (1957) (from here on referred to as vdH) and Hansen and Travis (1975) (from here on

referred to as HT); note below however, they use different conventions for “intensity”. For

incident unpolarized light, the first Mueller matrix element S11 defines the scattered light and

will be used in our calculations (see equation 2.1). The derivations of vdH (section 2.1) and

HT (section 2) relate what we refer to as the flux density (erg cm−2 s−1) scattered by a single

particle, as seen at distance R, to the incident flux density which we denote as πF :

Fs

πF
=

S
k2R2

(2.1)

We reserve the term intensity for flux density per unit solid angle (Chandrasehkar 1960; see also

HT section 3). For a scattering system such as a ring, consisting of a volume of N scatterers,

having a finite angular extent dΩ as seen by the observer, the traditional quantity of interest is

the intensity I or flux per unit solid angle. Moreover, remote observations normally express the

brightness of an extended source as its reflectivity or the ratio of its intensity to the intensity

17



from a perfect Lambert surface, illuminated and viewed at normal incidence, covering the same

solid angle, which is IL = πF/π = F . We thus rewrite equation (1) to address an optically

thin layer of scatterers with area A normal to the incident flux and vertically integrated particle

surface number density n(r) = N/A. Viewed by the observer at an angle θ from the normal to

A, where µ = cosθ, the solid angle subtended by the scatterers is dΩ(A,R) = µA/R2, and the

scattered intensity for the particle layer is:

Is(r) =
NFs

dΩ
=
πF S n(r)

µ k2
(2.2)

where particle number density n(r) = n0r−p for a power law particle size distribution. The

Intensity for the layer is then summed over the particle size distribution to get the total scattered

intensity (expressed as I/F ):

I

F
=

rmax∑

rmin

πS11

µk2
n0r

−p
i ∆ri, (2.3)

We can also relate S11 to the standard phase function P (r) = 4π S11(r)/k2σsca(r), where P (r)

and S11(r) are functions of scattering angle from the incident direction and particle properties

(refractive indices and particle radius r), k = 2π/λ, and scattering cross section σsca(r). The

dimensionless efficiency factors for scattering, absorption, and extinction by the particle of size

parameter x = 2πr/λ at wavelength λ are Qs(r) ≡ σsca(r)/πr2, Qa(r) ≡ σa(r)/πr2, and

Qext(r) ≡ Qa(r) + Qs(r). The scattered flux for a single particle can be expressed in terms of

its scattering phase function P (r):

Fs =
πF σsca(r) P (r)

4πR2
(2.4)

Following equation 2.2, the scattered intensity for a volume ofN scatterers can be expressed in

terms of P (r):

Is =
NFs

dΩ
=

NπFσsca(r)P (r)
4πµA

=
FP (r) )(r) τ(r)

4µ
(2.5)

where single particle albedo )(r) = Qs(r)/Qext(r), and optical depth is defined as τ(r) =

n(r)Qext(r)πr2. Summing over the particle size distribution we get the total scattered intensity,

expressed as I/F :
I

F
= )P

τ

4µ
=

rmax∑

rmin

πS11(r)
µk2

n0r
−p
i ∆ri, (2.6)
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where now ), P , and τ are understood to be averaged over the particle size distribution at

wavelength λ. The two expressions in equation 2.6 for I/F will be used in our modeling in

sections 2.3.4, 2.3.5, and 2.3.6. Also, we are primarily interested in calculating the shape of the

spectrum rather than the absolute value of I/F , since the parameter no is unknown for the F

ring (which means an uncertain optical depth).

2.3.4 Mie scattering and Diffraction

We start with the simplest scenario, in which the ring particles are assumed to be

spherical ice particles of uniform but arbitrary density (depending on their porosity), assuming

internal structures are much smaller than the wavelength λ, so particles look isotropic and

homogeneous to the wave. Mie theory (or even simple diffraction theory; Hedman et al 2008)

can be used to calculate scattering from such particles after refractive indices are calculated

which are appropriate for the desired porosity (see below in section 3.4.1 for how porosity was

treated).

The overall spectral profile at high phase angle is dominated by the diffracted

component of the scattered light in the forward direction (Pollack and Cuzzi 1980, Hedman

et al 2008). The dominance of diffraction at high phase angle is demonstrated by comparing the

spectrum of absorbing carbon particles to that of solid ice particles with the same powerlaw

size distribution (figure 2.9). The overall profile of the carbon spectrum must be due to

diffraction only, since carbon has negligible contribution to scattering from external reflection

and its absorption coefficient is so large that no internal transmission/refraction takes place.

Therefore, absorbing particles only diffract light in the near forward direction. The “red”

slope at shorter wavelengths (brightness increases with λ) is caused by a deficiency of smaller

particles (r < 10µm) needed to contribute to diffraction at shorter wavelengths at this phase

angle, which brings down the intensity at that end. Recall that the width of the diffraction

lobe is ∼ λ/2r, thus for some fixed angular offset 180 − α from the forward direction, λ/r ∼
constant. Similarly, at longer wavelengths, the “blue” slope (brightness decreases with λ) is

caused by a deficiency of large particles (r > 30µm). Applying this simple model to solid

ice particles with particle radii between 1 − 40µm, we found that the envelope of the F ring

spectrum requires a limited width size distribution, which we modeled as a powerlaw (r−3)

with radii r ≈ 10 − 30µm (see also Hedman et al 2008). The interesting aspect of this result
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is that the distribution is somewhat narrow compared to most diffuse ring distributions except

the E ring (see Showalter et al 1991 or Throop et al 1998); our approximation by a powerlaw

instead of a smooth, unimodal distribution such as Hansen-Hovenier distribution (HT section

2), for instance, may be refined in future studies and is likely not of significance over this narrow

size range.

In figure 2.9 the overall profile of the ice and carbon spectra for the same particle

size distribution follow the same pattern at various phase angles. This demonstrates that, like

the carbon particles, the ice particle spectra are also dominated by diffraction. The carbon

particles, of course, do not display a Christiansen feature in this spectral range. Realizing

that the scattered light is dominated by diffraction makes it easy to understand the absence of

the familiar 1.5 2.0, and 3µm features seen at lower phase angles (figures 2.3 and 2.4) - the

amount of light that has entered the ice particle is merely a small perturbation on top of the

large diffracted component. This is because the transmitted light, whether absorbed or not, is

dispersed by refraction into a far larger solid angle than the diffracted component (HT figure 5).

There is clearly some spectral manifestation of the strong 3µm water ice band, but

the shape and even central wavelength of the observed feature are unusual. Its shape is

extremely narrow and its central wavelength is at significantly shorter wavelengths than the peak

absorption in the ν3 band (at 3.1µm). It looks nothing like the 3µm absorptions seen at lower

phase angles (figure 2.4). This narrow feature is due to the Christiansen effect at 2.86µm, where

the real index crosses unity and extinction drops significantly (see sections 2.3.2 and 2.3.6). We

find that the two major features of the F ring spectrum - the spectral envelope, which represents

only the particle size distribution, and the 2.86µm dip, which is the only manifestation of the

optical properties - can be modelled separately. In section 2.3.5 we describe our modeling of

the 2.86µm feature.

2.3.4.1 Porous particles analyzed by Effective MediumTheory

Our first models, using solid water ice, failed to give a dip at 2.86µm that was as

sharp and deep as the data (see figure 2.9, green curve). Next, we used Effective Medium

Theory (EMT) to model porous particles to see if porosity would affect the depth and shape

of the 2.86µm band, while leaving the overall spectral envelope unchanged. EMT calculates

effective optical constants for a composite/porous particle by averaging over its constituents.
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Figure 2.9: (top) I/F for solid carbon particles (black) and solid crystalline ice particles (red) calculated with a
Mie model for the same size distribution (10-30 µm powerlaw) and phase angles ranging from 177.4-178.5o . The
overall spectral shapes for both disparate compositions match very well except for the 2.86µm dip present in the
ice spectrum. (bottom) Comparison of VIMS data and Mie-EMT models for crystalline ice particles with different
porosities and no internal structure at one phase angle (178o). All the Mie-EMT calculations in this plot have been
done with a power law particle size distribution ranging from 10-30 µm, except for the Mie-EMT particle (solid
black) which was done for a broader size distribution (5-30 µm), and clearly demonstrates the effect of smaller
particles on the fit. Solid ice has the best overall fit, but the band depth is too shallow compared to the data. As the
porosity increases, the band depth also increases, but at the expense of the overall fit.

There are various flavors of EMT (Bohren and Huffman 1983); our calculations use Maxwell

Garnett theory where the average refractive index of a porous particle is calculated by assuming

that its solid component contains unresolved vacuum sites or, vice versa, small spherical solid

particles are distributed in a vacuum “matrix”. The amount of vacuum (porosity) is a free

parameter in the calculation and we tested scattering for various porosities. We define the solid

volume fraction as f and the porosity as 1−f . A simple way to visualize the effects of porosity

on scattering is to consider a simple linear expression for the volume-weighted average of the

indices which is valid in cases where |nr − 1| $ 1 and ni $ 1 with the complex refractive

indexm = nr + ini (van de Hulst 1957, chapter 11), as is true for our spectral range of interest

(Cuzzi and Estrada 1998). Since ni(porous) = f ·ni, and nr(porous) = 1+f · (nr −1), porous

particles have nr closer to unity which causes the extinction efficiency Qext to be dominated

by absorption through the particle. In this regime where x ( 1 and |m − 1|x ( 1, anomalous

diffraction theory can be used to get an analytic formula defining Qa, Qs, and Qext (Draine
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and Allaf-Akbari 2006) which we will use to motivate a toy model of the process (section 3.6).

Figure 2.9 shows calculated water ice spectra for different porosities; higher porosity caused

the 2.86µm band to get too deep and wide in a relative sense, since it caused the particle albedo

and Qext to increase well away from the 2.86µm dip.

The simple Mie model was useful to constrain the particle size distribution at ultra

high phase angles (see figure 2.10) and explain the location and uniqueness of the 2.86µm

feature. In figure 2.10, we can see that the position of the 2.86µm dip is better fit by crystalline

ice, whereas the amorphous ice spectral dip shifts to a shorter wavelength with respect to the

data and crystalline ice. The Mie-EMT approach helped us understand the effects of porosity

on the spectrum but it failed to match the 2.86µm band shape qualitatively or quantitatively, so

we move on to a different approach (the Discrete Dipole Approximation or DDA) where we

assume that the ring particles are aggregates instead of single spherical particles.

2.3.5 Discrete Dipole Approximation (DDA)

The Discrete Dipole Approximation (DDA) is a brute force method, originally

introduced by Purcell and Pennypacker (1973); we will utilize the version developed by Draine

and Flatau (1994). The DDA is a method of calculating the scattering and absorption of

electromagnetic waves by a target object of arbitrary geometry. Target objects are constructed

from a regular lattice of individual polarizable dipoles with size smaller than a wavelength (λ)

so that the target mimics a homogeneous dielectric material. The dipole spacing is restricted by

the criterion |m|kd ≤ 1, where m = complex refractive index, k = 2π/λ is the wavenumber,

and d = dipole spacing (this forces the optical path length 2πmd to be less than the wavelength

λ, and the dipoles act as point scatterers). The polarizability of each dipole can be adjusted to

represent the refractive indices of different materials. The polarization state of all dipoles in the

system is iterated in response to their individual scattered fields, until a steady state solution

is obtained. The overall scattering and absorption cross sections of the array of dipoles are

calculated from the final dipole polarization solution. The scattered intensity is calculated from

the Mueller Matrix elements Sij obtained from the DDA code (see section 2.3.3, equation 2.3).

We define the porosity Φ of our aggregates by using the method of moments developed by Shen

et al (2008),

Φ = 1 − f, (2.7)
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Figure 2.10: (Top) Mie-EMT calculations show the crystalline ice Christiansen feature, positioned at 2.86µm,
matching the observed position of the feature in the VIMS data. However, the amorphous ice feature occurs at a
shorter wavelength than observed. (Bottom) VIMS spectra (red) and EMT ice particles with 30% porosity (black) at
various phases ranging from 177.4-178.2 degrees. The size distribution used for fitting the spectra at phases 177.4-
178.0 is our standard power law ranging between 10-30 microns (section 2.3.4). Going to phases greater than 178
degrees such as 178.2, requires even a tighter distribution such as 12-30 micron particle radii to properly fit the short
wavelength end. Such a small variation of n(r) with longitude is not implausible (see figure 2.2).
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filling factor f = (α2 + α3 − α1)(α3 + α1 − α2)(α1 + α2 − α3)−1/2 (2.8)

where αi = Ii/0.4Ma2
eff , and Ii is the aggregate’s moment of inertia for principal axis i. The

radius of a solid, equivalent mass sphere aeff = r · Φ1/3 and the number of dipoles in the

aggregate is Nd = (4π/3)(aeff /d)3.

Figure 2.11: Simulated Aggregate (radius 15µm and 30% porosity) with overlapping monomers of radii rm.
We have explored rm between 1-3µm here and in the models of thispaper rm =3µm. The idealization of a single
monomer size is diminished because the overlapping monomers form a lumpy aggregate with a range of effective
monomer sizes and shapes.

From our EMT modeling we find that we need aggregate radii r between 10-30µm

with an optical size x = 2πr/λ ranging from 12− 33 at 2.0µm wavelength. The aggregates are

composed of individual monomers ranging between 1-3µm in radius rm (see figure 2.11). The

DDA model has recently been optimized by consultants at NASA’s HEC Computing facility at

Ames Research Center to be able to handle large scatterers such as our aggregates (2πr/λ *
100). The optimized code (http://www.astro.princeton.edu/∼draine/DDSCAT.7.0.html) uses a
combination of MPI and OpenMP, where loops within the code are spread out among multiple

cpus. The consultants obtained time improvements of about 20 times over the unparallelized

version (DDSCAT6.0), and we run on a fast system using typically 64 cpus.

The aggregates are simulated by first picking the desired aggregate envelope size from

the size distribution constrained by the Mie-EMT model, a porosity, and a monomer radius rm.

The monomer centers are selected randomly within a sphere of radius ragg and assigned radii;

the ensuing spherical monomers can overlap so, even though rm is constant for an aggregate,

a degree of lumpiness or irregularity is present (figure 2.11). We fill the aggregate with such

monomers until the desired porosity Φ is reached. We explored rm =1-3µm, which produced
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little difference, and settled on rm =3µm. The aggregate is then populated with dipoles which

reside on a regular grid in (x, y, z) and fill the volume stipulated by the placement of the

monomers. The dipole size needed to satisfy the DDA criteria mkd = 1 is calculated. We

have not done convergence tests but since we are primarily interested in integrated quanitites

such as Qe, rather than details of, for instance, the polarization or phase function, mkd = 1

will be satisfactory for our calculations. The scattering calculations are averaged first over a

series of 32 orientations for a given realization of an aggregate, then over alternate realizations

of the monomers within the same size aggregate, and finally over a size distribution of similarly

averaged aggregates.

Figure 2.12 shows the results from DDA aggregates using three different size

distributions and 30% porosity, compared to a Mie-EMT calculation of similiar porosity and

to VIMS data at 178o phase angle. The DDA size distribution is coarsely binned using 10-12

aggregate sizes. The noisy oscillations at wavelengths shorter than 2.86 µm are due to coarse

size sampling and diminish as more size bins are used. The Christiansen feature band depth

modeled with this approach is a much closer match to the VIMS data. However, the overall

spectral fit is degraded at short wavelengths when the same size distribution as that of Mie-

EMT modeling is used. Adjusting the size distribution to contain fewer small particles brings

down the short wavelength end of the spectrum (see figure 2.12) but simultaneously widens

the 2.86µm band somewhat. Further refinements of the model involving size binning, porosity,

monomer sizes or size distributions, etc. might be profitably pursued, but the DDA models are

quite lengthy to run and we feel at this point that the aggregate model is on the right track. The

difference between the Mie-EMT and DDA aggregate fits (band depth and size distribution) can

be explained by a simple toy model, described in the next section.

2.3.6 Toy Model

In this section we describe a simple model which helps explain the difference between

the DDA and Mie-EMT results, especially in the wavelength region where nr ∼ 1. Specifically,

the depth of the Christiansen feature is much shallower for the Mie-EMT model than for DDA

aggregates, and the size distributions needed to fit the overall shape of the spectrum are different

between the two models.

To motivate the model we first separate the net scattering behavior of the particles into
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Figure 2.12: F ring VIMS data (red) modelled with: Mie-EMT crystalline ice particles with a power law size
distribution ranging between 10-30 µm in radius and 30% porosity (green), DDA crystalline ice aggregates (black)
with the same porosity and three different size distributions. The DDA power law size distributions range between
9.5-33 µm in aggregate radii (solid black), 11.5-33 µm (long black dash), and 12.5-33 µm (short dash).

three somewhat differently behaving functions. We rewrite the integrated quantities of equation

(6) as
I

F
= )P

τ

4µ
= )PQext

∫
πr2n(r)dr, (2.9)

whereQext is also a size-integrated average extinction efficiency. We can separately explore the

dependence of ), P , and Qext on wavelength for any size distribution (figure 2.13). Looking

at the components of the scattered field we can see that the extinction efficiency Qext is the

major contributor to the shape of the Christiansen feature, and also has a strong ramp across

the wavelength range of interest, while the albedo and phase function dominate the overall

shape of the spectrum (its peak near 2-3µm); for this reason, we focus on Qext to explain the

improvement in the fit of the 2.86µm feature in the DDA models.

We next note that Qext can be related to the phase shift of a wave passing through
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a particle. These absorbing particles with large x fall under anomalous diffraction theory, and

in the range where nr is close to unity (which also means a small relative phase change ρ =

2x|nr − 1| $ 1), the extinction efficiency Qext is a monotonically increasing function of

ρ (figure 2.14; see van de Hulst 1957, chapter 11.23). The parameter ρ is a nominal phase

difference between a wave traversing a dielectric medium without interfaces and one that has

gone the same distance undisturbed. Since Qext dominates the Christiansen feature (figure

2.13), how fast Qext increases away from the linear region near nr = 1 or |m − 1| ≈ 0 where

it is a minimum, as wavelength varies, dictates the depth and width of the band. Particles with

larger phase shifts have higher Qext and can remove energy from the incident EM wave more

efficiently.

Figure 2.13: I/F is the product of phase function P , extinction coefficientQext, and albedo$. The left segment
is the product of $ and P , with Qext in the middle, and finally the product of all three parameters giving the
normalized intensity I/F in the last segment (plots from Mie-EMT runs). The major effect on the depth of the band
in the spectrum is from Qext.

While ρ is a good general way to parametrize the extinction efficiency (Qext), the
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Figure 2.14: Extinction coefficientQext versus phase shift ρ = 2x(nr −1), where nr is the real refractive index,
and size parameter x = 2πr/λ. The expression used to plot Qext here is valid in the ADT regime and is for an
absorbing particle with nr = 1.02 and ni = 0.08 (values close to those at the Christiansen frequency at 2.86µ). As
we approach the Christiansen frequency, ρ = 2x(nr − 1) " 1 where Qext is monatonically increasing .

real phase change through a complicated particle - an aggregate or multilayer - has extra terms

related to the phase changes arising from reflection and transmission at the various interfaces.

An aggregate with overlapping monomers has many optical interfaces and various pathways

of varying lengths for a traveling electromagnetic (EM) wave. We model an aggregate by a

dielectric multilayer of ice-vacuum layers with varying thicknesses. Analytical solutions can be

written for the complex transmission and reflection coefficients of such multilayers (Born and

Wolf 1999, chapters 1 and 14) which include the net phase change of the wave and explicitly

identify these interface terms. We vary the thickness and distances between the layers randomly,

keeping the aggregate porosity constant by keeping the ratio of the ice to air layers the same

for the various configurations. We then average the phase change through many realizations

of such multilayers to capture the general behavior of the phase change through an aggregate.

A Mie-EMT particle is modeled by a uniform single layer with the EMT optical constants for

the desired porosity. Given that the parameter ρ, or relative phase, is a way to characterize the

behavior of Qext for a particle, we estimate the scattering difference between an aggregate and

a uniform particle by calculating the phase change of an EM wave traveling through an ice-air

multilayer relative to a wave passing through a uniform layer of the same total mass.

We calculate the transmission through a multilayer by using the characteristic matrix

M for a single layer of thickness z at normal incidence (Born andWolf 1999). The characteristic

matrix of the multilayer MT is found by multiplying the single layer characteristic matrices
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Figure 2.15: Multilayer toy model consists of randomly placed, alternating layers of ice and vacuum with complex
refractive index mj and thickness zj which can vary randomly between 0-6µm. The total length of the multilayer
is kept constant at a value representative of the mean diameter of our aggregate size distribution (about 30µm). We
generate many realizations of such multilayers, all having the same average density and total thickness.

(see equations 2.10). The final transmission coefficient t is obtained by calculating the matrix

elements of MT (equation 2.11). The transmission coefficient is the ratio of the transmitted

electric field to the incident electric field; it can be written in terms of the phase shift φ of the

transmitted field after the multilayer t = |t| eiφ.

M(zj ,mj) =

∣∣∣∣∣∣
M j

11 M j
12

M j
21 M j

22

∣∣∣∣∣∣
;

M j
11 = M j

22 = cos(kmjzj)

M j
12 = − i

mj
sin(kmjzj), M j

21 = −imj sin(kmjzj)
(2.10)

MT =
N∏

j=1

M(zj ,mj); t =
2

(MT
11 + MT

12) + (MT
21 + MT

22)
(2.11)

The difference in phase change between traversal of a multilayer and a single layer is

plotted in figure 2.16. The most obvious feature in the phase change of figure 2.16 (at 3.1µm) is

not seen in the data, for reasons explained in the caption. Instead, we focus on the more subtle

and more interesting behavior near 2.86µm. Note that the phase difference goes through zero

where nr = 1, as expected from ρ = 2x|m−1| (if ni $ 1). The ice-vacuum multilayer quickly

obtains a greater phase shift, moving away from the 2.86 µm Christiansen frequency, relative

to a single layer of the same porosity. This more rapidly changing phase difference indicates

that Qext is changing faster for a multilayer, or moving away from Qext = 0 (at nr = 1) faster,

than for a single layer. The reason is that the final emergent wave in the multilayer problem has
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contributions that represent no reflections, two reflections, four reflections, etc (from here on

referred to as the “interface terms”). The multireflection cases have larger paths over which to

accumulate phase shift. The phase shifts may be larger than 2π, but as you vary the spacings

randomly, and average the results, the net effect of adding the multireflection components with

random phase shifts is that the net change in phase will be larger for a multilayer than for a

solid slab with the same mass/area. At the Christiansen frequency the reflection coefficients get

very small; here, the multireflection contribution is negligible so the multislab and single slab

cases give the same phase shift. The aggregate also has this “feature” of having multireflection

paths in addition to the straight through paths. This will have little effect at the Christiansen

frequency, but will lead to larger phase shifts close to, and on either side of, the Christiansen

frequency. We can conclude that a multilayer representing an aggregate is a better scatterer,

and able to diffract more energy at smaller nr, which is why aggregates have a deeper band.

Moreover, the relative phase change also has a greater slope at wavelengths shorter than ∼ 3µm
than at longer wavelengths.

This effect also explains why our DDA spectra require different particle size

distributions than our Mie-EMT models - the DDA models call for a distribution with fewer

small particles (starting around 13 - 30 µm) than the EMTmodels. Since the smaller aggregates

are those which are diffracting into the instrument at the shorter wavelengths, at these high

phase angles, and aggregates are better scatterers than uniform particles, fewer of the small

aggregates can be allowed for consistency with the data. However at the large wavelength

end the scattering properties are similar for aggregates and uniform particles, as we can see

in the constant phase difference, because these longer wavelengths blur the interfaces between

wavelength-size monomers, causing the “interface” terms to become less important. Thus,

for λ > 3µm, the DDA models provide a similar fit to the EMT models with the same size

distribution (10 µm - 30 µm).
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Figure 2.16: (left) Transmitted phase difference ∆φ (radians) between an ice-air multilayer and single ice layer
with 30% porosity and 30µ thickness versus λ (µm). There are three main features in this plot: (1) the phase
difference sharp rise and fall about 2.86µm is where the transmitted EM wave accumulates a larger phase change
after going through the multilayer interfaces compared to a single layer (see section 3.5); (2) the asymmetric slope
of the phase change below and above ∼ 3µm affects the size distribution used in the DDA model (represented by
a multilayer) compared to that used in the Mie-EMT model (represented by a single layer) (see section 3.5); and
finally (3) another large accumulation of phase change is at 3.1µm where the interfaces of a multilayer play a large
role due to the large imaginary index at this wavelength (see right panels for optical constants). However, we don’t
see this feature in the observed spectrum because the particles are absorbing with a large imaginary index and Qext

never gets small. That is, the energy transmitted thru the particle is negligible and its effects are insensitve to the
details of its phase shift, as opposed to the phase-shift-sensitive behavior at the Christiansen frequency where the
energy transmitted is significant.
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2.4 Conclusion

Our Mie-EMT modeling has restricted the particle size distribution to a limited range

between 10−30µm. Further tests can be done to investigate the exact nature of the rolloff at the

limits of the size distribution, but for our purposes an estimate of the size range is enough to get

the general profile of the spectra. Our modeling has also constrained the particle composition

using the wavelength of the central dip in the spectrum, which is very sensitive to composition

at high phase angles. We found that crystalline ice best captures the position of the central

dip, as opposed to amorphous ice which shows a dip at a shorter wavelength than observed.

Diffraction dominates the overall spectral shape, and the only spectral feature that shows up is

at the Christiansen frequency where the real part of the refractive index goes through unity and

the imaginary part remains very small, so the particles’ optical activity is drastically reduced.

We further explored the possibility of aggregates by using the DDA approach and found that

aggregates with a size distribution similar to the Mie-EMT models provide a better fit for the

depth and width of the central band. The two modeling approaches imply slightly different size

distributions, which can be explained by a simple dielectric multilayer toy model. Aggregates

are more effective scatterers than uniform particles, and hence have a deeper 2.86µm band

and asymmetric spectral shape. This is because of the many surface-interface reflections

which become more important at shorter wavelengths and higher refractive indices. Another

implication is that no other material besides water ice can be present with a significant fractional

abundance, because no other common material has nr = 1 at 2.86µm. This confirms that

crystalline water ice must be the dominant component in the F ring particles. However, more

detailed modeling on better data might constrain small amounts of non-icy pollutants such as

silicates.
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Chapter 3

Regolith radiative transfer model

3.1 Background

This section describes a new approach to modeling radiative transfer in granular

surfaces, referred to as regoliths. This model is based on the discrete dipole approximation

(DDA) where scattering calculations are not limited by packing density, shape, or size of

particles in the regolith. Regolith scattering can be categorized by two major optical regimes

defined by the refractive indices of the regolith material. The first regime is referred to as

“surface scattering” (where real and/or imaginary indices, and surface reflectance are large).

The second regime is “volume scattering” (where the imaginary index is low and the real

index is greater than or close to 1) which has moderate surface reflectance and low internal

absorption. Restrahlen bands fall into the first category and “transparency regions” including the

Christiansen feature (where the real index n = 1) fall into the second (Mustard and Hays 1997,

MH97). Mineral identification and grain size estimation is accomplished from remote sensing

data using the shapes and relative strengths of these strong bands, and it is in these strong bands

and the transparency regions between them where the shortcomings of standard theoretical

models are the most apparent. In a general way, the variations of these different feature strengths

with regolith grain size variations are somewhat in accord with simple predictions; however, at

a closer look, the correspondence is poor, as shown by Moersch and Christensen (MC95) for

granular silicates with well known composition and size distribution. Furthermore, MH97 show

that the asymmetry of the Olivine restrahlen bands at 9-11µm wavelength is opposite that of

theoretical predictions. For quartz, MH97 and MC95 both show that strong restrahlen bands
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are poorly modeled in yet another way, with theoretical models showing almost no variation

with regolith grain size and data showing noticeable variation. These are the high-refractive-

index “surface scattering” regimes. Differences are easily found in the “volume scattering”

transparency regimes as well: MH97 show that the sense of the observed 10-12µm band strength

variation, as grain size varies between 2-60µm, is directly opposite the sense predicted by the

models in figure 3.1.

As an example we tested the performance of some typical popular models against

laboratory measurements of emissivity from a layer of quartz grains for various grain sizes

(data courtesy P. Christensen and J. Michalski). The test models used a combination of

Mie/Conel theory (MC95) to calculate single grain albedo and van de Hulst’s similarity relations

to calculate an integrated emissivity (Cuzzi and Estrada 1998). As we can see in figure 3.1, the

Mie-Conel-van de Hulst models predict some of the structure in the quartz emissivity spectrum,

but miss other major features. Also, the discrepancy increases for smaller wavelength-size

grains at larger wavelengths which starts getting into the region of interest for our applications.

Note also, in figure 3.1 (and in MC95), the 20-22 µm spectra show entirely different behavior

in the Mie-Conel theoretical models than in the data of Michalsky and Christiansen, in a way

distinct from surrounding wavelength regions.

Figure 3.1: Comparison of Mie-Conel and van De Hulst models (dashed and dotted lines) with laboratory
emissivity measurements of granular quartz layer (solid line) for three separate grain size
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To recap, current models do not handle key physical properties of regolith surfaces

(close packing, irregular particles, wavelength size grains) from first principles and fail to

capture many important features of laboratory silicate data and remote observations of planetary

surfaces. Our model is based on the Discrete Dipole Approximation (DDA) which accounts for

closely packed irregular grains of arbitrary size. Our model will have applications to reflectance

and emission spectroscopy of grainy regoliths in general (Mars, the moon, asteroids, etc) at mid-

and far-infrared wavelengths.

The DDA calculates the scattering and absorption of electromagnetic waves by a

target object of arbitrary geometry and thereby automatically accounts for all close packing

effects and size dependence. In the DDA approach, target objects are modeled as a regular

lattice of individual polarizable dipoles with size smaller than a wavelength. The polarizability

of each dipole can be adjusted to represent the refractive index of an arbitrary material (Drain

Flatau 1994,1988). Heterogeneous composition and irregular shape are easily captured this

way.

To apply the DDA approach to a regolith layer, we have made several changes from

the normal way it has been used. In one novel modification, horizontally extended, semi-infinite

slabs of regolith made up of closely packed grains of arbitrary size and shape are modeled

using a single target ’unit cell’ subject to periodic horizontal boundary condition (PBC). In a

second novel modification, the emergent intensities are calculated in the near field of the layer.

This is a new approach to calculating scattering using the DDA method since traditionally all

scattering calculations have been done in the far field. This step itself has two parts: evaluating

the scattered electric field on a planar 2-D grid, and evaluating the hemispherical angular

intensity distribution using a fourier transform approach.

In section 3.2 we describe our approach in its three main elements: (1) a DDA code

with horizontal periodic boundary conditions, (2) calculating the scattered field in the near field

of the layer, and (3) determining the angular direction of the emitted radiation using a Fourier

analysis method. In section 3.3, we present the tests we have run to evaluate the performance

of our model against analytical results for transmission, and reflection, from a homogeneous

dielectric layer, finding good agreement. In section 3.3.2 we present our model of granular

layers of various porosities.
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3.2 Model description

The DDA uses a regular lattice structure composed of closely spaced independently

scattering dipoles to represent targets of various composition. An important criterion for the

dipole lattice is that the size of and spacing (both given by d) between the dipoles must be

small compared with the wavelength λ = 2π
k of the incident radiation in the target material:

|M |kd < 1
2 , where M is the complex refractive index of the target . The second criterion is

that for a given d, the total number of dipoles N must be large enough to describe the shape

of the target and its constituent monomers satisfactorily. To model extended layers we use the

same validity criterion as for finite targets, but add periodic horizontal boundary conditions to

replicate our finite unit cell and represent a layer of infinite horizontal extent.

3.2.1 Periodic boundary conditions

A finite rectangular slab of dipoles, referred to as the target unit cell (TUC), is

periodically replicated on the horizontal plane to represent a semi-infinite 3-D layer. Each

dipole in the TUC has an image dipole in each periodic replica cell. All dipoles in the TUC

and replica oscillate with the appropriate phases in response to an incident plane wave. The

electromagnetic field inside the target is the sum of the initial radiation and the field from all

other dipoles in the layer. A steady state solution is obtained by an iterative method, as described

below. The dipoles are located at positions r = rjmn with the indices m,n running over the

replica targets, and j running over the dipoles in the TUC:

rjmn = rj00 + mLyŷ + nLz ẑ (3.1)

where Ly, Lz are the lengths of the TUC in each dimension. The incident E field is.

Einc = E0e
ik·r−iwt (3.2)

The polarizations of the dipolesPjmn are initially driven by the incident field, and phase shifted

relative to the TUC polarization Pj00:

Pjmn = αjEinc(rj , t) = αjE0e
ik·(rj00+mLy ŷ+nLz ẑ)−iwt = Pj00e

ik(rjmn−rj00) (3.3)
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Figure 3.2: Schematic of the DDA code operated in the PBC regime, with the TUC shown in
the center and image cells arrayed around. Io indicates the incident flux and Is indicates the
scattered flux. θ is the angle between the incidednt beam and normal axis of the particle layer
and φ is the azimuthal rotation around the normal of the layer.

The field at position j in the TUC (m = n = 0) is due to all other dipoles both in the TUC

(index l) and in the replica cells.

Ej00 = −Ajlmn

[
Pl00e

ik(rjmn−rj00)
]

= −Ajlmneik(rjmn−rj00)Pl00 (3.4)

Ej00 = −APBC
jl Pl00, APBC

jl = Ajlmneik(rjmn−rj00) (3.5)

Once the matrix APBC
j,k has been calculated, then the polarization Pj00 for each dipole in the

TUC can be calculated using an iterative technique.

Pj00 = αj

[
Einc(rj) −

∑

l

APBC
j,l Pl00

]
(3.6)

3.2.2 Calculating radiation from the PBC dipole layer

Once the polarization of the dipoles in the target layer has been obtained, we can

calculate the radiated field. For most purposes in the past, the radiated field was calculated in the
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far field of the target (kr >> 1); however, this introduced edge effects since the radiation was

calculated by summing over the radiated contributions only from a single TUC. This problem

will be present even if we were to include more TUC’s; no matter how large the target, its

finite size will be manifested in the far radiation field as an increasingly narrow diffraction-like

feature. Another problem with calculating radiation in the far field is that eventually we would

like to build thicker granular layers by placing DDA layers next to each other and using an

adding/doubling code to calculate the resultant scattered field. For this application, the far field

limit does not apply and we have to move closer to the layer to sample the radiation field.

3.2.2.1 The nearfield

Given that the DDA layers are placed close to each other to represent a regolith, we

need the radiated field in close proximity of the layer that is, in its near field. This region is

known as the shadow of the layer. Since we can’t make any approximations in the shadow we

will use the full Green’s function to calculate the radiated field (see below), which is a sensitive

function of position with respect to the layer. In the horizontal y and z directions the phase of the

field fluctuates rapidly. In the x direction, as the field travels away from the layer it transitions

from the near field (where evanescent waves can be present) to the Fresnel zone where patches

of dipoles within the target are oscillating coherently, and finally to the far field limit where the

semi-infinite layer is seen as a finite target.

Figure 3.3: Schematic of our approach to determining T in the shadow zone of the TUC. The
diffuse reflectivity, will be determined in a similar geometry on the lit side of the TUC.
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3.2.2.2 Sampling the field on a 2-D sheet

In the next two sections we will show how we go from the field sampled on a two

dimensional grid parallel to a layer, to a full three dimensional angular distribution in elevation

and azimuth relative to the layer normal. The first step in obtaining the scattered intensity within

the classical shadow zone of the slab, is to calculate the scattered electric field on a 2-D grid

(otherwise known as the target unit radiance or TUR) just outside the layer. We will use the

image cells in calculating the field within the TUR; since the dipole polarizations Pj in the

TUC are periodic, the TUR field is also periodic. The general expression for the field due to a

collection of dipoles with polarization Pj of the jth dipole is as follows:

ETUR = k2
N∑

j=1

Pj · ˜̃G, (3.7)

˜̃G =
eikrjk

rjk

(
k2(r̂jkr̂jk − ˜̃I) +

ikrjk − 1
r2
jk

(3r̂jk r̂jk − ˜̃I)

)
, (3.8)

whererj = distance to grid points in the TUC,rk =

distance to grid points in the TUR, rjk = |,rj − ,rk|, r̂jk = (,rj − ,rk)/rjk, ˜̃I is the identity

tensor, and ˜̃G is the free space tensor Green’s function. This is done on both sides of the slab,

i.e., on the reflected and transmitted sides. On the transmitted side, we will add the incident

electric field that is propagating through the slab. However, on the reflected side we will

only calculate the scattered field. This method has been written as a FORTRAN code called

DDFIELD which is currently distributed with ddscat as a subroutine. The layer polarizabilities

calculated by ddscat are fed into DDFIELD to calculated the electric field from them.

3.2.3 Determining the angular distribution of scattered intensity

Our approach to determining the emergent intensities in the near field, as a function

of angle θ,φ for any given θo,φo, follows the formalism of Mandel and Wolf (1994). It is

well known that a complex field distribution can be represented by a superposition of simpler

plane waves. Now, if the complex waveform is decomposed across a plane, then the spatial

components represent plane waves traveling away from the plane in various angular directions.

Consider a monochromatic wave-field E(x, y, z) that satisfies the Helmholtz equation across a
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plane x = x0. and that can also be represented by a Fourier integral.

ETUR = E(y, z : x0) =
∫ ∫

E(ky, kz : x0)ei(kyy+kzz)dkydkz (3.9)

Then the field E(x, y, z) has the following inverse transform:

E(ky, kz : x0) =
∫ ∫

E(y, z : x0)ei(kyy+kzz)dydz (3.10)

The Helmholtz equation is:

(+2 + k2)E(r) = 0,where r = (x, y, z) (3.11)

Substituting the 2-D Fourier integral of the field E(x, y, z) into the Helmholtz equation we get

the differential equation:

∂2E(y, z : x0)
∂x2

+ k2
xE(y, z : x0) = 0 (3.12)

with the general solution:

E(ky, kz : x0) = A(ky, kz)eikxx0 + B(ky, kz)e−ikxx0 (3.13)

k2
x = k2 − k2

y − k2
z , k =

2π
λ

(3.14)

kx = (k2 − k2
y − k2

z)
1
2 where k2

y + k2
z ≤ k2 (3.15)

kx = i(k2
y + k2

z − k2)
1
2 (3.16)

The roots with k2
y + k2

z > k2 are evanescent and will decay. Therefore we will

sample the field in a position where the evanescent terms have decayed and are negligible (as

determined by tests). We would like to compute the scattered field emanating away from the

target, therefore we will only consider the solution in a half space: in the reflected region x < 0,

B(ky, kz) = 0 and in the transmitted region x > 0, A(ky, kz) = 0. We can proceed with one

side since the other differs by a minus sign. For example on the transmitted side we can write

the Fourier transform of the electric field across any plane x = x0 as follows:
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A(ky, kz)eikxx0 =
∫ ∫

E(x0, y, z)ei(kyy+kzz)dkydkz (3.17)

where the scattered electric field E(x0, y, z) has been computed on a grid of points on a plane

x = x0 in the shadow zone (the TUR). The Fourier transform of the electric field on the

TUR gives the relative strength of each spatial frequency component composing that field, and

therefore each plane wave stream leaving the TUR. The distribution of energy as a function

of spatial frequency k = 2π/λ should be highly localized at k2, allowing us to determine

k2
x = k2 − k2

y − k2
z and its angular distribution is the angular distribution of the emergent

scattered intensity at the plane x = x0. This approach will also provide a way to discriminate

against any static components in the field; appearance of significant anomalous energy at high

spatial frequencies (i.e. much higher than |,k|), is an indication of static fields. If this problem
appears, we would merely move the TUR slightly further from the face of the TUC.

3.2.3.1 Fourier transform method and sampling relationships

As described in section 3.2.2.2, subroutine DDFIELD is used to determine the electric

field E(x0; y, z) on a 2D grid located a distance xo away from the layer equation 3.7 and 3.8.

The sampling location x0 is adjustable within the shadow zone (the near field of the layer), but

should not be so close as to improperly sample evanescent or non-propagating field components

from individual grains. Incident wave polarizations can be either parallel or perpendicular to

the scattering plane (the plane containing the mean surface normal ex and the incident beam).

At each incident zenith angle θ0, calculations of E(x0; y, z) are made for many azimuthal

orientations, defined by the angle β and several regolith particle realizations, and averaged

incoherently (in intensity space). Such averaged results can then be obtained at a number of

zenith angles θ0, and used to obtain the full diffuse scattering function S(τ ;µ0, µ,φ − φ0)

and diffuse transmission function T (τ ;µ0, µ,φ − φ0) of a layer with optical depth τ and

emission angle µ = cosθ. As noted by Hansen (1969) the quantities S(τ ;µ0, µ,φ − φ0) and

T (τ ;µ0, µ,φ − φ0) can be thought of as suitably normalized intensities; thus our fundamental

goal is to determine the intensities diffusely scattered and transmitted by our layer of grains.

We use the formalism of the angular spectrum, described by Mandel and Wolf (1994,

section 3.1.2). The angular spectrum and the field on a grid are usually defined as infinite-

domain Fourier transform pairs (see below). We will use the “cycles” definition of frequency

47



(in our case, spatial frequency) rather than the “radians” definition used by Mandel and Wolf

(MW) for simplicity; this removes floating factors of (1/2π). We will retain the transform

“direction” notation of MW, which is common (see also Blackman and Tukey method in Stoica

and Moses 1997, SM97); in this convention the frequency-dependent function is obtained using

the negative exponential. We note that Numerical Recipes (Press et al. 1999) adopts the opposite

“direction” convention, which we feel leads to less intuitive results in the frequency domain. In

the 1D case, with y spatial, and k and spatial frequency, coordinates respectively, the infinite

Fourier Transform reads:

g(k) =
∫ ∞

−∞
f(y)e−2πiykdy (3.18)

f(y) =
∫ ∞

−∞
g(k)e2πiykdk (3.19)

MW and other authors discuss the angular spectrum only in the context of the infinite

Fourier Transform shown above, where the dimensions of f(y) and g(k) are different, but for

practical reasons we will be using discrete or finite Fourier Transforms. This leads to subtle

but important differences. In particular, changing to the finite transform pairs f(y) and a(k) =

g(k)/L and then expressing them in their discrete series forms leads to:

a(k) = g(k)/L =
1
L

∫ L/2

−L/2
f(y)e−2πiykdy ≈ 1

N∆y

∑

l

f(yl)e−2πiylk∆y, , (3.20)

or, now also discretizing k:

a(kα) =
1
N

∑

l

f(yl)e−2πilα/N (3.21)

f(yl) =
∑

α

a(kα)e2πilα/N (3.22)

where yl = l∆y, kα = α∆k, and ∆k = 1/(N∆y) where N is the number of points

in both the y and k arrays. Note that the dimensions of f(y) and a(k) are the same. This

convention seems to be the more common one, in that the prefactor goes with the negative sign

in the exponential, and the negative sign is used to generate the function defined in frequency

space (SM97).
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We thus trivially rewrite the transform pair of MW, using their equations 3.2-

19,20,23,25, and 27, as

U(ky, kz) =
∫ ∞

−∞

∫ ∞

−∞
E(0, y, z)e−2πi(yky+zkz)dydz (3.23)

E(0, y, z) =
∫ ∞

−∞

∫ ∞

−∞
U(ky, kz)e2πi(yky+zkz)dkydkz . (3.24)

The electric field E is sampled on the plane x0 = 0; note that E and U have different

dimensions.

We now consider the associated discrete Fourier transform, on the finite plane of

dimension L2. By analogy to the 1D case (equation 3.20) we define a slightly different vector

transform function Ai(ky , kz) = Ui(ky, kz)/L2 (where i = x, y, z component of each quantity)

as the two-dimensional finite Fourier Transform of the 3D complex vector electric field strength

Ei(x0; y, z) (x0 can be chosen =0).

Ai(ky, kz) =
1
L2

∫ L/2

−L/2

∫ L/2

−L/2
Ei(x0; y, z)e−2πi(yky+zkz)dydz, (3.25)

where we note as that in SM97, the numerical scaling prefactor is associated with the negative

exponential transform into frequency space. This (finite) integral transform is readily replaced

by a discrete summation, where we substitute yl = l∆, zm = m∆, ky = αdk, kz = βdk,

and l,m,α, and β are integers, where ∆ = dy = dz is the grid spacing in the cartesian (y, z)

DDFIELD grid. From sampling theory, dk = 1/L where L is the full linear extent of the

2D grid of E(y, z) (assumed to be square), and the maximum resolvable spatial frequency is

kmax = 1/∆; typically −kmax/2 ≤ (ky , kz) ≤ kmax/2. Then

Ai(ky, kz) =
1

(N∆)2

N/2∑

−N/2

N/2∑

−N/2

Ei(x0; yl, zm)e−2πi(lα+mβ)∆/N∆∆2 (3.26)

Ai(ky, kz) =
1

N2

N/2∑

−N/2

N/2∑

−N/2

Ei(x0; yl, zm)e−2πi(lα+mβ)/N , (3.27)

where here Ai(ky, kz) and Ei(x0; yl, zm) have the same units. Using this transform

convention, the discrete form of Parseval’s theorem reads

∑

α

∑

β

|Ai(α,β)|2 =
1

N2

∑

l

∑

m

|Ei(l,m)|2, (3.28)
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which is intuitively meaningful because the wave’s E field (nominal magnitude Eo) covers

all N2 points in the (y, z) grid, but the equivalent emerging plane wave only occupies a

single grid cell in the (ky, kz) grid. The convention in Numerical Recipes makes less sense

in our context. So, if |Eo|2 is a flux density (energy/area/time/wavelength interval) then so
is |A(α,β)|2 (leaving aside issues of the permittivity of free space). This relationship was
numerically verified in our code.

The orthogonal components Ex, Ey, and Ez are separately transformed and com-

bined. The output Ax, Ay, Az could be used to calculate polarization state (Apar , Aperp),

which are both, by definition, perpendicular to the ray direction at (ky, kz), but because we are

only interested in intensity, we simply sum the squares of Ai as noted above.

The discrete transform quantities Ai(α,β) represent plane waves with some unpolar-

ized, total flux density
∑3

1 |Ai|2 propagating in the directions θ(ky, kz), (φ−φ0)(ky , kz), where

the angles of the emergent rays are defined relative to the normal to the layer and the incident

ray direction (θ0,φ0):

kx = kocosθ (3.29)

ky = kosinθsin(φ− φ0) (3.30)

kz = kosinθcos(φ− φ0) (3.31)

where ko = 1/λ and we solve at each (ky, kz) for kx = (k2
o − k2

y − k2
z)1/2. It is thus an implicit

assumption here that all propagating waves have wavenumber ko = 1/λ; it can be verified

numerically that there is no energy at k > ko, as might occur if the the DDFIELD sampling

layer at xo had been placed too close to the scattering layer.

Overly coarse sampling of k−space can result in poor estimates of the locations
and magnitudes of emergent rays; unfortunately the dimension of the DDFIELD grid is

computationally constrained to some degree. We overcome this obstacle by zero-filling the

array E(x0; y, z) out to some considerably larger extent L′, retaining the original array as a

subset. Upon transforming this larger array we achieve spatial frequency resolution dk′ =

1/L′ $ dk = 1/L; this high resolution reveals the true locations and amplitudes of the peaks by

over-resolving their intrinsic angular width in wavenumber space dk = 1/L. Tests conducted

using this simple trick provided a very regular and reliable reconstruction in k-space of both

the direction and amplitude of incident plane waves crossing the DDFIELD grid in a variety
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of directions. This is a valuable approach, because the compute time needed to converge a

DDFIELD grid of size N2 is strongly dependent on N , while the time needed to perform an

FFT of a significantly zero-filled grid grows only as N logN .

The more highly resolved plane wave fluxes A′
i(k

′
y, k

′
z), are smaller in magnitude

than a value which lies entirely in a single (ky, kz) bin and represents the entire plane wave.

This is because, as flux densities, the more highly resolved results of the zero-filled calculation

represent the intensity integrated over a smaller solid angle. To obtain the total flux density in the

wave, we would sum over the narrow “packet” of rays, each having angular width dk′ydk′
z lying

in a scattered lobe of (larger) angular width dkydkz . Nevertheless, an effective intensity can be

determined for each of these rays, given by its flux divided by its corresponding solid angle. As

defined this way, the intensity is invariant to zero-filling, because the flux in a (ky, kz) bin simply

decreases with the angular width of the bin. That is, A′
i(k′

y, k
′
z)/dk′

ydk′
z = Ai(ky, kz)/dkydkz .

Below, we show how we determine true intensities (flux density per unit solid angle).

From this point on, we assume fluxes are summed over their components i and

suppress the subscript i. The next step is converting the angular distribution of plane waves,

or flux densities (energy/time/area), |A(ky, kz)|2 into intensities (energy/time/area/solid angle).
Perhaps the most straightforward approach is to determine the element of solid angle subtended

by each grid cell dkydkz at (ky, kz): dΩ(θ,φ) = sinθ(ky, kz)dθ(ky, kz)dφ(ky , kz). Then the

intensity is

I(θ,φ) = |A(ky, kz)|2/dΩ(θ,φ). (3.32)

We have computed the elemental solid angles in two separate ways. One obvious but

cumbersome way to calculate dΩ(ky, kz) is to determine the elemental angles subtended by

each side of the differential volume element using dot products between the vectors representing

the grid points, and multiply them to get the element of solid angle dΩ(ky, kz). Another method

makes use of vector geometry to break dΩ(ky, kz) into spherical triangles (Van oosterom and

Strackee 1983). These methods agree to within the expected error of the technique. A simpler

and more elegant approach is to rewrite equation 3.32 as

I(θ,φ) =
(
|A(ky , kz)|2

dkydkz

)
dkydkz

dΩ(ky, kz)
= (

|A(ky , kz)|2

(1/L)2
)

Jdθdφ

dΩ(ky, kz)
, (3.33)

where the Jacobian J relates dkydkz = Jdθdφ:

J = (∂ky/∂θ)(∂kz/∂φ) − (∂ky/∂φ)(∂kz/∂θ) (3.34)
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Then from equations (3.32-3.34) above, J = k2
osin(θ)cos(θ), and

I(θ,φ) =
|A(ky , kz)|2(koL)2sin(θ)cos(θ)dθdφ

sin(θ)dθdφ
(3.35)

= |A(ky, kz)|2cos(θ)(koL)2 = |A(ky , kz)|2cos(θ)(L/λ)2. (3.36)

This last expression can be thought of physically as the flux coming through an

aperture of dimension L × L (the DDFIELD grid), at a zenith angle θ, distributed into a

cone of (diffraction) solid angle (λ/L)2. We can also write explicitly dΩ = sinθdθdφ =

sinθ(dkydkz/J) = sinθ(1/L2)/k2
osinθcosθ = λ2/(L2cosθ). Numerical tests confirm that

this expression reproduces the directly determined elemental solid angles, so we will use this

simpler and more elegant closed-form relationship.

After checking the region of k-space k2
y +k2

z > k2
o for nonphysical, anomalous power

and thereby validating the location x0 of the sampled E(x0; y, z), and converting to intensity,

the Cartesian grid of I(ky, kz) is splined into a polar grid I(µi,φj) with coordinate values

µi corresponding to the cosines of the Gauss points in zenith angle from the layer normal.

This interpolation is designed to eliminate the nonphysical region k2y + k2
z > k2

o from further

consideration and streamline subsequent steps which will use Gaussian quadrature for angular

integrations of the intensities.

The radiation on the forward-scattered side of the layer is all-inclusive - that is,

includes both the scattered radiation and the radiation which has not interacted with any particles

(the so-called “directly transmitted beam”). To extract the directly transmitted beam from the

diffusely scattered intensity of interest, we will identify the emergent angle expected to contain

the directly transmitted beam (µ0 = cosθ0,φ−φ0). We will then perform two spline fits: (a) of a

small region surrounding the total emergent flux density covering the point (µ0,φ−φ0), and (b)

of the underlying broader, smoother function T (τ ;µ0, µ,φ−φ0) while ignoring points close to

the nominal beam direction (ie, points within the actual angular resolution of the original spatial

frequency grid 1/L). The interpolated value of the underlying smooth function at (µ0,φ− φ0)

will be subtracted from the interpolated value in the emergent direction (obtained from the full

flux distribution of (a)) to give the flux density of the directly transmitted beam alone, which

will give us the effective layer slant optical depth τ/µ0 at angle θ0. For subsequent applications

involving the doubling method, it will be assumed that the attenuation of the direct beam through
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a nonclassical layer of twice the (slant) thickness with the same properties will simply scale as

exp(−2τ/µ0). No such complication afflicts the diffusely reflected radiation.

3.3 Tests

The simplest validity test of our regolith model is simulating a dielectric slab with well

known analytical solutions for reflection and transmission given by the Fresnel coefficients. The

Fresnel coefficients test the accuracy of the electric field calculated from dipole polarizabilities.

The Fourier transform method can be tested by locating the position of the specular beam on

the reflected and/or transmitted side of the slab.

3.3.1 Dielectric slab tests

We used the DDA PBC method to simulate a slightly absorbing homogeneous dielectric slab

with M=1.5+0.02i. The slab is modeled with 20x2x2 dipoles along its x, y, and z dimensions and

is illuminated at θ0 = 40◦. The dimensions of the slab are held constant while the wavelength

is varied which results in the characteristic sinusoidal pattern in transmission and reflection as

incident radiation sweeps out multiple fractions of the optical path through the layer (see figure

3.4). Figure 3.4 shows the electric field on the transmitted and reflected sides compared with

Fresnel’s analytical formulae for the same dielectric layer. The agreement is very good, however

there is an azimuthal variation of the electric field with respect to the slab which we expected

to be uniform for a homogeneous dielectric slab. The variation is smooth and small at less than

ten percent level and we will average it out by using many orientations.

To test the FFT method (section 3.2.3) for getting the angular direction of scattered

radiation, we analyzed the location of the scattered beam on either side of the layer. We sampled

the electric field vector on a 2-D grid of points Ny = Nz = 64 where the Fourier transform

of the vector field is taken separately for each dimension. The power is obtained by squaring

the transformed amplitudes in each dimension. Contour plots (figure 3.5) show the peak of the

power spectrum in the reflected region for various incident angles. We can see that as we change

the incident radiation angle the emergent intensity changes location in k-space accordingly

which confirms that our model is consistent with Snell’s law.

Since the PBC calculations are computationally challenging; requiring multiple
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Figure 3.4: (top): Comparison of the transmission coefficient, as a function of wavelength, and
for two different planes of polarization TE and TM, for a slightly absorbing dielectric slab as
calculated on the TUR by our code (red triangles), and as calculated from Fresnel coefficients
for the same slab (solid line for TM and dashed for TE). The slab is h =20 dipoles (6 µm) thick
with an index of refractionm = 1.5+0.02i, and the wavelength λ varies between 4.5-9µm (see
section 3.2). (bottom): Reflection coefficient comparison for the same slab between DDfields
calculation and Fresnels analytical expression.

processors and days to reach convergence, it is advantageous to use a more relaxed |M |kd

criterion to reduce computation time. So we looked at the variation of the electric field with
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Figure 3.5: (top): Reflected intensity in k-space shown on a polar plot with dimensions (θ,φ) for
three incident radiation angles: θo =20◦, 40◦, and 60◦ and φo = 0 for all cases. The emergent
shown as a white circle in the polar plot moves in k-space at the correct emergent angle: θ =
20◦, 40◦ and 60◦.
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Figure 3.6: Reflectivity from a dielectric layer for various |M |kd values ranging between 0.4-
0.9 compared with Fresnel’s analytical solution (top). Bottom panel shows the difference
between Fresnel’s coefficient and the dielectric slab reflectivity divided by Fresnel’s value
(percent error). The difference between the two starts taking off at |M |kd = 0.9.

various mkd values ranging between 0.4-1.0. In figure 3.6 we can see that the field variation

and its comparison with Fresnel’s coefficients is in good agreement within less than ten percent

for |M |kd values below 0.7 and diverges from there. This was a first check to see if we can

push the limit on |M |kd and we will further check this for granular layers to make sure we’re

not introducing large errors in our calculations.
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3.3.2 Granular layer

Figure 3.7: (left): Granular TUC constructed by overlapping monomers with %70 packing
fraction. (right) Granular TUC with %30 packing fraction.

After gaining confidence that our RRT model can reproduce a dielectric slab we

started to model granular layers with diffuse scattered fields. For a first order study we take

the simplest approach to generating granular layers by populating the TUC with overlapping

spherical monomers of the same size and composition. We use the well known quartz refractive

indices for these monomers at 15.5µ wavelength which is a problematic band for current models

as shown in figure 3.1. The scattered field from this layer is calculated by DDFIELD for

each combination of (incident light polarization, azimuth orientation β with respect to layer

normal) separately and averaged incoherently over polarization to get an intensity profile as a

function of θ for a given β orientation. The granular TUC’s are about five monomers deep

and 3-5 monomers across making up a TUC box with 50-100 monomers. The monomers are

comparable to the size of the wavelength (complex modeling region of interest) which requires

many millions of dipoles to reach adequate accuracy. Due to the large size of these granular

TUCs, ddscat takes many iterations to converge on a solution and certain subset of β orientations

show large variations in both field measured on the TUR grid, and intensity measured in the

angular domain (see figure 3.8). We can see from figure 3.8 that these bad fields and intensities

are very distinguishable from the converged solutions and can be thrown out before averaging
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Figure 3.8: Transmitted intensities for various β orientations from a granular layer with %70
filing factor and two mkd criterion (top panels – |M |kd=0.5, bottom panels – |M |kd=0.8).
left panels show abnormal intensities in red and converged intensities in black. We take the
average of the converged intensities shown in blue in the right panels. The variation in averaged
transmitted intensity is within %10 for the two mkd cases.

over β orientations. There is a similar variation with β in the absorption coefficient Qabs with

distinct bad values for non-converged orientations. This is further indication that the abnormally

large fields are a result of non-convergence in ddscat rather than a problem with DDFIELD’s

calculations. Averages over β orientations are again done incoherently and plots of intensities as
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Figure 3.9: Reflected intensities for two realizations (solid and dotted blue, with the average of
the two in green) of a granular layer with %70 filling factor and |M |kd = 0.8. The averaged
intensity for the same layer with |M |kd = 0.5 is shown in red for comparison. Variations due
to granular realizations and larger |M |kd is within an acceptable limit for our initial studies.
Its also interesting to note that there is a qualitative difference in the two averaged reflected
intensity curves for |M |kd = 0.5 and 0.8. We believe this is due to the change in grain shapes
becoming less spherical as the |M |kd criterion is relaxed.

a function of θ (angle from normal) for two cases with different |M |kd’s 0.5 and 0.8 are shown

in figure 3.9. The field is lumpy as opposed to the dielectric slab’s single specular peak due to

the granular structure in the layer. There is also a remnant of the 40o specular peak visible in

these cases. Its important to note from figure 3.9 that the scattered intensity varies within %10

between the two mkd cases and realizations which means that (1) we don’t need to average over

too many realizations for an acceptable solution and (2) we can use |M |kd = 0.8 to speed up

our runs.

Our final results are granular runs with filling factors varying between 0.1, 0.2, 0.5,

and 0.7. All these layers are modeled with the same amount of quartz material but varying

TUC volume to simulate various porosities. This way the material density of the layers

is the same and we can isolate the effect of close packing on the scattered intensity. We

calculate filling factors for these layers by taking the ratio of the number of quartz dipoles

to vacuum dipoles in the TUC box. The results are shown in figure 3.10 where the most

porous layers are more reflective and the dense layer is packed to the point where it resembles a
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Figure 3.10: Reflected and transmitted intensity as a function of zenith angle for granular
layers of various filling factors. All layers are composed of quartz monomers and incident
upon by a 15.5µ beam at 40o zenith angle. The densely packed layer in black is resembling a
homogeneous layer with a specularly reflected and directly transmitted peak present at 40o. The
less dense layers are more reflective and less transmissive. There is a transition layer at %50
filling factor which has no directly transmitted beam (where interface terms causing phase shift
of light as it travels between material and vacuum play an important role in transmission).

homogeneous dielectric layer with a rough surface. An electromagnetic beam traveling through

a homogeneous dielectric layer is attenuated with an optical depth τ given by the extinction

coefficient of the material 4πni/λ where ni is the imaginary refractive index. In contrast for the

highly porous layers where there are large vacuum gaps between monomers, the optical depth

τ = Qext ∗ nπr2 where Qext is the extinction coefficient and r is the radius of each monomer.

n is a particle density defined as the number of particles per surface area of the layer. The

%50 filling factor is an interesting transition region where the monomers are closely packed

enough to introduce interference effects and the vacuum gaps are large and abundant enough

to contribute to interface terms as discussed in chapter 2. The interface terms are so significant

that they cancel the directly transmitted beam through this layer.

60



3.4 Conclusion

I have developed an end-to-end approach for regolith radiative transfer for monomers

Of arbitrary size, shape, and packing density. The various parts of this approach have been

thoroughly tested. PBC was tested by generating a dielectric layer with its transmission and

reflection coefficients compared to Fresnel’s analytical coefficients with good agreement. The

FFT method for localizing the beam in k-space was tested by moving the zenith angle of the

incident beam which resulted in the scattered beam emerging at the correct emergent angle in

accordance with Snell’s law.

There are intriguing results from the granular layers where its apparent in three

different layer porosities that extinction does not scale simply as τ of independent particles,

and spacing does matter.
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